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ABSTRACT
Recognizing indoor activities of an individual provides use-
ful information in smart living, well-being monitoring, and
fitness management. In this paper, we propose a simple and
fast human activity recognition (HAR) system based on Ra-
dio Frequency energy harvesting (RFEH). The intuition is
that the harvested voltage signals of different human activi-
ties exhibit distinctive patterns. Utilizing the data collected
from four smartphones, the RFEH-based HAR system in-
dicates over 91% accuracy of activity recognition across all
devices. By combining the lightweight classifiers and making
an ensemble classification, an overall accuracy of over 97%
is achieved.

CCS CONCEPTS
• Computer systems organization→ Sensors and actu-
ators; Embedded hardware; •Networks→Wireless local
area networks.
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1 INTRODUCTION
Human Activity Recognition (HAR) has drawn consider-
able attention in the past two decades due to the growth of
sensing technology. Detecting and learning a user’s daily
activities indoor can be very practical in many areas such
as smart living [12], health surveillance [6, 9] and physical
exercise monitoring/management [3, 18]. Previous works
focused on using various sensors to detect human activi-
ties and required the user to carry a wearable device that
is suffering from installation difficulties and high battery
consumption [10]. Recently, Xu et al. [16] proposed to use
wearable kinetic energy harvesting device to detect user’s ac-
tivities. Nevertheless, their systems like SEHS [11], KEH-Gait
[16, 17] and CapSense [8] still need the user to be equipped
with the device when he/she is performing activities. There
are other non-intrusive HAR systems such as CARM [14]
and E-eyes [13] that leveraged informative measurement
like Channel State Information (CSI) for activity detection,
whereas processing such huge amount of data will introduce
high computational cost and time expense.
In this paper, we propose a simple and fast HAR system

based on RF energy harvesting (RFEH) to detect five normal
indoor activities. The RFEH-based HAR system needs to
be put next to the Wi-Fi router while the user’s phone is
connecting to this Wi-Fi. Different physical movements of
the user will cause difference in fluctuations of the amplitude
and phase in the harvested RF energy from Wi-Fi signals
[10]. with the obtained raw RF energy, the system further
conducts data pre-processing and recognizes the activity
type through several pre-trained classifiers. The empirical
results indicate our system not only achieves high accuracy
on human activity recognition but also saves computational
cost compared with the aforementioned HAR works.
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2 RFEH-BASED HAR SYSTEM
In this section, we first introduce the overview of RFEH-
based HAR system and then present the harvested signals
of several activity patterns.

2.1 System Overview
Figure 1 shows the structure of the RFEH-based HAR system.
This system only requires the user to carry his/her WiFi-
connected phone instead of wearing any intrusive devices.
It uses the AC voltage signal harvested by the RF energy
harvesting circuit (details will be included in the following
section). The raw voltage signal will be processed by the
data pre-processing module. A low-pass filter is applied to
reduce the noise and the filtered signal is then fed into some
pre-trained light-weight user activity classifiers. Finally, the
classifiers output an ensemble result as the prediction of the
most possible activity of the Wi-Fi user.

Figure 1: Overview of RFEH-based HAR system

2.2 Activity Patterns
We explore patterns of five different human activities from
the RFEH voltage signals: Stand, Walk, Run, Go Upstairs
and Go Downstairs. Figure 2 indicates the comparison of
the harvested signals when the user performs various activi-
ties. We can observe that the signal shapes, vibrations, and
amplitudes are very different among these activity patterns,
implying that distinct features can be extracted from each
harvested voltage signal.
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Figure 2: Harvested voltages signals from different
user activities (each activity 100 seconds, iPhone 6S)

Figure 3: Hardware components: Wi-Fi router, RF en-
ergy harvesting circuit and data collection module

3 EXPERIMENT
In this section, we will illustrate the details of important
components of the RFEH-based HAR system.

3.1 Hardware Platform
The hardware platform consists of three parts: (1) a single-
antenna (Transmitting Antenna) Wi-Fi router that can gen-
erate 2.4GHz RF signals to simulate a common indoor Wi-Fi
access point; (2) an RF energy harvesting board from Pow-
ercast co. called P21XXCSR-EVB which can harvest energy
from six different frequency bands. We use the 2.4GHz fre-
quency port by connecting an antenna (Receiving Antenna)
to receive 2.4GHz Wi-Fi signals; (3) a high-speed sampling
module that contains an Arduino Uno and a 16GB SD card.
We set the sampling rate at 100Hz for data sampling and all
data has been collected and stored in the SD card. Figure 3
shows each part of the hardware platform that we made to
conduct the experiments.

3.2 Data Collection and Feature Extraction
In the data collection process, we conducted the experiment
in the circumstance as shown in Figure 4. The Wi-Fi router
and our system were on a 3m × 1m table. The user was
required to hold the phone (Wi-Fi connected) and performed
three activities (Stand, Walk and Run) in a 6m × 4m room
and other two activities (Go upstairs, Go downstairs) on the
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Figure 4: Experiment circumstance and setups

stairs with ten steps near the room. In the experiment, we
set the sampling rate at 100Hz and the distance between two
antennas as 10 cm [1]. Here are the experimental details of
different activity patterns.

Stand The user stood in the middle of the roomwith 1.5m
away from the table for 720 seconds while holding the Wi-Fi
connected smartphone.

Walk/Run The user stood for 120 seconds to get the ini-
tial static signals and then walked at approximately 1m/s
speed around the room for 600 seconds to collect the walking
pattern data. Similarly, we asked the user to run for another
600 seconds at a speed of 3m/s to gather running data.

Go Upstairs/Go Downstairs To collect data from Go
Upstairs/Downstairs patterns, the user was required to hold
a timer and go upstairs in 10 seconds and go downstairs in
the following 10 seconds and repeated these action for 600
seconds (Also, set the first 120 seconds for collecting starting
signals). Then we split the data based on each 10 seconds
segment to make data sets of the Go Upstairs pattern and
Go Downstairs pattern respectively.

After accomplishing the data collection, we applied a low-
pass filter on the harvested signals to eliminate possible noise.
Then, we calculated the average voltage in the first 120 sec-
onds of each activity pattern and deducted this voltage in
the 600 seconds activity data which can remove the interfer-
ence from the different starting voltages. Next, we divided
the processed 600 seconds signals into 2 seconds windows
and for consecutive windows, we set the overlapping rate
as 50%. Finally, we used these divided signal segments and
corresponding labels to build the data corpus.
In this experiment, we collected data from four devices:

iPhone 6S, iPhone 11, Huawei P9, and Samsung S10. Fig-
ure 5, 6, 7 show the harvested voltage signals (each activity
100 seconds) from the other three devices (iPhone 11, Huawei
P9 and Samsung S10) respectively. We can know that even
different devices can have various voltage signals when the
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Figure 5: Harvested voltage signals of iPhone 11
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Figure 6: Harvested voltage signals of Huawei P9
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Figure 7: Harvested voltage signals of Samsung S10

Table 1: Summary of datasets from four devices (Num-
bers of collected data samples of five activities)

Device S W R GU GD Total

iPhone 6S 719 498 607 299 299 2422
iPhone 11 439 899 899 199 199 2635
Huawei P9 679 679 679 199 199 2435
Samsung S10 439 699 699 299 299 2435

user is doing the same activity, the signals of the five activity
patterns are different. Then we used the same process to
build four datasets that are shown in Table 1 (S: Stand, W:
Walk, R: Run, GU: Go Upstairs, GD: Go Downstairs).

In the feature extraction process, we extracted features
from the data of each window. Aforementioned works [5, 8]
often extracted more than thirty features and designed an
algorithm for feature selection. However, too many features
may lead to an overfitting problem which makes the model
specifically outperform on one dataset but show poor results
on other datasets. Moreover, model complexity and time con-
sumption will increase as more features are utilized. In fact,
only a few important features are needed for the uncompli-
cated tasks such as detecting five human activities. Thus, we
extracted fourteen common time-domain features [5] which
are shown in the Table 2.
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Table 2: Time-domain feature set. The following 14
features are calculated from a 2 seconds window

Feature Description

Mean The average value of voltage
samples.

Standard Deviation The amount of variation or dis-
persion of voltage samples.

Maximum The maximum value of voltage
samples.

Minimum The minimum value of voltage
samples.

Range The difference between maxi-
mum and minimum.

Root Mean Square Measures the effective energy of
a voltage signal segment

.

Absolute Mean The average of absolute voltage
values.

Coefficient of Variation The ratio of Standard Deviation
and Mean.

Skewness Measures the asymmetry of volt-
age signal distribution.

Kurtosis Measures the peakedness of
voltage signal distribution.

1st Quartile (Q1) The first, second (median), third
quartiles. Measures the overall
distribution.

Median
3rd Quartile (Q3)

Inter Quartile Range The difference of Q3 and Q1. It
also indicates dispersions.

3.3 Activity Classifiers
We select four fast, light-weight supervised machine learning
classifiers to evaluate the recognition performance of our
system: (1) CART [2] Decision Tree with entropy criterion;
(2) Linear Support Vector Classifier (LinearSVC) with L2-
norm penalization; (3) Support Vector Machine (SVM) with
RBF kernel; (4) Random Forest with 100 trees and the upper
bound of forest depth is 15. We exploit the Python sklearn
library to build these classifiers. Meanwhile, Grid Search and
Random Search are used for hyperparameter tuning.

For each dataset, 80% data are utilized for training the four
classifiers with 10-fold cross-validation [4] and we use the
other 20% data to evaluate the model performance.

4 EVALUATION
In this section, we evaluate the system performance on the
four datasets. In addition, we analyze the incorrect recogni-
tion cases and explore the limitations of our system.

4.1 Results
We evaluate the performance of our system by applying the
four light-weight classifiers and calculating their accuracies
on the collected datasets respectively. Table 3 shows the
classification accuracy results. We discover that our system
achieves over 98% recognition accuracy of each classifier on
the Huawei P9 dataset. Besides, it can achieve over 91%, 96%,
and 93% accuracies on the other three datasets (iPhone 6S,
iPhone 11, and Samsung S10).

Table 3: Accuracy (%) of classifiers on four datasets
Classifier iPhone 6S iPhone 11 Huawei P9 Samsung S10

Decision Tree 99.18 98.48 98.97 98.15
LinearSVC 91.75 96.77 98.36 93.63
SVM (RBF) 94.02 98.10 99.18 97.33

Random Forest 99.18 97.91 99.79 97.74

Furthermore, Table 3 indicates that classifiers like Decision
Tree and Random Forest perform better than LinearSVC
and SVM with RBF kernel. Even though the accuracy of all
classification results is high (overall > 91.75%), we still find
errors in the activity recognition and the analysis will be
discussed in the following section.

4.2 Error Analysis
To understand and explore the errors, we investigate the
confusion matrices of two cases: a. LinearSVC classifier on
iPhone 6S dataset. b. SVM (RBF) classifier on iPhone 6S
dataset. We examine the correctly recognized activities by
presenting the True Positive Rate (TPR) values of each activ-
ity in the classification.
Table 4 and Table 5 show the confusion matrices of the

two cases (Stand: S, Walk: W, Run: R, Go Upstairs: GU, Go
Downstairs: GD). For case a, activity patterns such as W and
R are recognized with very high accuracy (98% and 100%)
while the other three activities S, GU, and GD have relatively
lower accuracies (86%, 83%, and 85%). For case b, S, W, and
R indicate excellent classification results (all > 95%) but the
performance of GU and GD are still poor (only 77% and 78%).
The TPR values of GU and GD are lower than S, W, and R
which reveals these two activities are quite similar and can
lead to confusion [5]. It also matches the harvested voltage
signals that are shown in Figure 2 and Figure 5- 7. The signal
shapes are quite different of activities Stand, Walk and Run.
Nevertheless, the signal shape of Go Upstairs is close to the
Go Downstairs.
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Table 4: The confusion matrix of LinearSVC classifier
on the iPhone 6S dataset (Case a)

Predicted activity
S W R GU GD TPR

True
activity

S 125 16 0 0 5 0.86
W 1 86 1 0 0 0.98
R 0 0 145 0 0 1.00
GU 1 4 0 43 4 0.83
GD 0 0 0 8 46 0.85

Table 5: The confusion matrix of SVM (RBF) classifier
on the iPhone 6S dataset (Case b)

Predicted activity
S W R GU GD TPR

True
activity

S 145 1 0 0 0 0.99
W 3 84 1 0 0 0.95
R 0 0 145 0 0 1.00
GU 7 0 0 40 5 0.77
GD 2 0 0 10 40 0.78

LinearSVC SVM (RBF) MVM
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Figure 8: The TPR values of GU, GD from single clas-
sifier and MVM ensemble method (iPhone 6S) .

Table 6: Accuracy (%) of using ensemble method clas-
sification (MVM) on four datasets

Method iPhone 6S iPhone 11 Huawei P9 Samsung S10

MVM 99.18 98.10 98.36 97.74

Hence, to reduce the confusion between similar human
activities, we propose an ensemble output method instead
of giving a result from the classifiers directly. We consider
using the Majority Voting Method (MVM) [7] since we want
to save computational cost and make a system that is easy
to understand and operate. The MVM will combine the pre-
dictions from the four classifiers and output the recognition
result that receives more than half of the votes (over two clas-
sifiers). Figure 8 shows the TPR values of GU and GD have
been enhanced a lot after utilizing the ensemble method (GU:
0.98, GD: 0.99). Then we calculate accuracies of ensemble
method classification on four datasets which are shown in
Table 6.

4.3 Limitations
The empirical results have demonstrated that the superior
performance of the RFEH-based HAR system. However, we
still find some limitations of our system and provide sugges-
tions and directions for further exploration.

Complicated human activities In the data collection
part, we only collected five common human activities. Nev-
ertheless, human activities have a wide degree of versatility
and some other works are exploring these complex activities
by using fine-grained measurement like Channel State Infor-
mation (CSI) [10]. For example, Zhang et al. [18] proposed a
model that can detect exercising activities such as Push-up,
Sit-up, and Walk-out. Moreover, Wang et al. [15] presented a
system that can profile a variety of walk activities (From bed-
room to kitchen, outside to bedroom, etc.) and determine if
the user is cooking. So much more features are needed to be
extracted from the harvested signals for deeper recognition
in future work.

InterferenceManywireless sensing systems (e.g. activity
detection, gesture recognition, and indoor localization) are
heavily impacted by the experimental environment [10]. We
conducted our experiment in an empty room with only one
Wi-Fi router so that the interference from the environment
can be ignored, yet the interference from other Wi-Fi sources
is inevitable in real situations. Thus, much more data should
be collected from diverse situations for analyzing the possi-
ble noise influence. Additionally, selecting a proper filter to
reduce noise is another significant issue in order to build a
robust system.

5 CONCLUSION
In this paper, we introduce a novel, intelligible HAR system
using RF energy harvesting. The experimental results have
shown that our system can achieve over 91.7% accuracy on
the detection of five daily human activities across different
devices. We utilize fewer time-domain features compared
with previous works and also apply an ensemble method of
lightweight classifiers which improve the overall recognition
accuracy over 97.7%. The current work illustrate that the
system can accurately detect basic activities, which inspires
us to investigate the possibility of extending our system to
more sophisticated activities in the future.
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