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Today, location-based services have become prevalent in the mobile platform, where mobile apps provide
specific services to a user based on his or her location. Unfortunately, mobile apps can aggressively harvest
location data with much higher accuracy and frequency than they need because the coarse-grained access
control mechanism currently implemented in mobile operating systems (e.g., Android) cannot regulate such
behavior. This unnecessary data collection violates the data minimization policy, yet no previous studies have
investigated privacy violations from this perspective, and existing techniques are insufficient to address this
violation. To fill this knowledge gap, we take the first step toward detecting and measuring this privacy risk
in mobile apps at scale. Particularly, we annotate and release the first dataset to characterize those aggressive
location harvesting apps and understand the challenges of automatic detection and classification. Next, we
present a novel system, LOCATIONSCOPE, to address these challenges by (i) uncovering how an app collects
locations and how to use such data through a fine-tuned value set analysis technique, (ii) recognizing the
fine-grained location-based services an app provides via embedding data-flow paths, which is a combination of
program analysis and machine learning techniques, extracted from its location data usages, and (iii) identifying
aggressive apps with an outlier detection technique achieving a precision of 97% in aggressive app detection.
Our technique has further been applied to millions of free Android apps from Google Play as of 2019 and 2021.
Highlights of our measurements on detected aggressive apps include their growing trend from 2019 to 2021
and the app generators’ significant contribution of aggressive location harvesting apps.
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1 INTRODUCTION

Nowadays, location-based services (LBSes) have become extremely popular in the mobile platform,
and many mobile applications (apps) deliver various LBSes to their users based on their locations.
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For example, Yahoo Weather acquires locations to provide local weather forecasts, and Google
Map collects locations in real-time to navigate users to their destinations. Considering the location
data is greatly sensitive to user privacy, the access control of users’ location data is enforced by
mobile operating systems (e.g., Android) with a permission-based security mechanism, which
typically provides three permissions, i.e., the one-time permission, the foreground permission, and
the background permission.

However, current location-related permissions only regulate when an app could access the
location data but put no restrictions on how an app access the location, such as the frequency to
retrieve the data and the granularity in terms of location accuracy, after being granted permissions.
Consequently, apps can collect location data beyond their need to deliver their LBSes. For example,
we found 41 Google Play apps providing the zipcode auto-fill service that collects the precise location
less than every 0.3 seconds on average, while one-time access of the coarse location appears to
be sufficient. In this paper, an app performing such unnecessary data collection is an aggressive
location harvesting app (ALHA).

ALHA raises significant privacy concerns and brings an alarming situation which has been
described as “every moment of every day, mobile apps collect detailed location data” [93]. In addition
to our newly discovered 41 aggressive zipcode auto-fill apps, the media has reported a study of
20 weather apps that showed a similar situation of aggressive location data harvesting [88, 93]. In
particular, most of these weather apps aggressively collect GPS coordinates of users beyond the
necessity to deliver the functionality as a weather app, and the harvested data had been confirmed
to be able to perform precise in-door tracking (within a building) and out-door tracking (driving
from work to home) [88, 93]. Even worse, the location data harvested from several apps had been
sold to third parties, including advertisers, retail outlets, hedge funds, and political campaigns [93].

Even if this privacy-concerning behavior in ALHA could be hopefully mitigated by newly
launched regulations (e.g., GDPR [44]), existing techniques and solutions are yet sufficient to detect,
measure, and suppress such aggressive behaviors in mobile apps. In fact, ALHA violates a basic prin-
ciple, i.e., data minimization, in these regulations. For example, the GDPR [44] defines this principle
as “personal data shall be adequate, relevant and limited to what is necessary for relation to the pur-
poses for which they are processed (data minimization)”. Though using different expressions, other
similar policy regulations and advocacy, e.g., CCPA [28], also contain this minimization principle.
Unfortunately, most previous studies, which investigated location privacy issues from the perspec-
tive of understanding privacy policy violations (e.g., 29, 39, 40, 61, 62, 80, 81, 86, 94, 102]), could fail
to identify the data minimization violations due to the absent knowledge of the location collection
precision and frequency requirement and the lack of ability to recognize fine-grained LBSes.

Specifically, while some other works build tools to detect location data leakages [31, 81, 82, 85]
and measure the location tracking in certain mobile apps [82, 84, 102], they primarily focus on
coarse-grained LBSes instead of the fine-grained LBSes. On the other hand, even if it appears
feasible to use a methodology from works that detect violations in mobile apps without well-
acknowledged standards by comparing its consumption of privacy-related resources with its peer
apps providing similar functionality (e.g., AAPL [64]), it poses another challenge on recognizing
similar functionality on the fine-grained level. Unfortunately, existing solutions, such as depending
on recommendation systems (e.g., Google Play) [64] or a workaround to extract functionalities for
later similarity comparison from both the text (e.g., app description [76]) and the code [71, 72, 75]
of an app, cannot differentiate the fine-grained LBSes. Therefore, there is an urgent need to detect
ALHA and measure its severity at scale.

Yet, it is non-trivial to address the challenges in ALHA detection. At a high level, its major
challenges include (i) how to identify the fine-grained LBSes an app provides; (ii) how to associate
each identified fine-grained LBS to its location data retrieving behavior within an app; and, most
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importantly, (iii) how to determine the minimum location requirement for each fine-grained LBS
without a consensus on data minimization standards. The last one is extremely challenging because
different LBSes can have completely different demands of the location data accuracy and frequency.
For example, it may only need a one-time and district-level location to geo-tag photos while nav-
igation services have to retrieve real-time and the most accurate locations periodically to navigate
users. Moreover, while a large body of work is devoted to inspecting the location collections in
mobile apps, none of them investigates location privacy from the perspective of data minimization
violation. Their proposed methodology, algorithms, and tools primarily aim to detect whether
location data has been collected and rarely consider their justification for collecting location data
in terms of the precision of location and the frequency of data collection.

In this paper, we propose LocATIONSCOPE to address these challenges and detect ALHA at scale.
Specifically, LocATIONSCOPE contains three phases. The first phase is to take an app as input and
use static program analysis to uncover its periodical location usages, including (i) how it accesses
the location data and (ii) how it processes the retrieved location to implement an LBS. Specifically,
location data access is analyzed in a multi-dimension manner by capturing the accuracy of location
data, and the spatial and temporal frequency of location updates it desires, and the location data
processing is understood from the location data-flow paths that send location to the outside (e.g.,
servers). Next, the second phase is to recognize fine-grained LBSes by clustering the location
data-flow paths. In particular, LBSes are abstracted from the corresponding location data-flow path
as numerical embeddings based on code embedding techniques. The embeddings are then clustered
based on their semantic similarity such that each cluster holds LBSes of similar functionalities. Last,
a semi-supervised approach is used to identify ALHA by looking for outliers in each specific LBS
cluster, which avoids extracting specific domain knowledge for each LBS in terms of the minimum
data usage requirement. Our corresponding evaluation on a ground-truth dataset, which consists
of 200 manually annotated ALHA (§3.1), shows that this algorithm can achieve a precision of 97%.

We have built a prototype of LocATIONScOPE and evaluated it on two datasets: one consists of
2.16 million free apps, and the other one contains 2.05 million free apps, which were all crawled from
Google Play as of 2021 and 2019, respectively. We discovered 14,091 aggressive apps from 2021 and
38,688 from 2019 that provide LBSes, including current address auto-filling, nearby service searching,
weather forecasting, etc. Among the 14,091 aggressive apps from 2021, 10,819 apps (76%) even retain
effective location collection behavior against the background location protection introduced in
Android 10 (see §6). In addition, our study revealed a significant source of aggressive apps when
investigating the root causes. Specifically, we find that 58.84% and 65.43% of aggressive apps in
2021 and 2019 are built from app generators, such as Goodbarber, Biznessapps, and Appsgeyser.
Interestingly, we have identified that apps generated by the latter two generators would request
fine-grained location permissions and send the locations back to the remote servers of the app
generators, even if there are no LBS visible to users.

Contribution. In short, we make the following contributions:

e Novel Approach. We present a novel approach of using code analysis and representation
learning to detect aggressive location harvesting in mobile apps.

e New Dataset. We annotate and release the first aggressive location harvesting dataset of
mobile apps!, in support of open science and any follow-up research.

e Empirical Findings. With the built prototype, LocATIONSCOPE, we discovered a growing
trend of aggressive location harvesting in Android apps from 2019 to 2021 and revealed that
app generators contributed to over half of these apps.

The Dataset is available at https://sites.google.com/view/aggressive-app/aggressive-app-dataset (see Table 3 in Appendix)
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2 BACKGROUND
2.1 Mobile Apps Location Collection

Mobile apps can retrieve the location data from almost all smartphones by invoking relevant system
APIs. In Android, apps can use system APIs to access the location data from the following two
sources with different granularities of accuracy.

e GPS signals: The Global Positioning System (GPS) is a satellite-based navigation system
that provides time and location information to any receiver with the line of sight to at least
four of the thirty-one GPS satellites that can give fine-grained locations. In addition, most
modern smartphones contain Assisted GPS (A-GPS) receivers which provide faster location
readings by caching and obtaining satellite data.

e Geo-location of networks: The local networks can also be used to obtain location informa-
tion, which is coarser than GPS signals. In particular, the device can retrieve location from
remote location databases by providing nearby cell towers or WiFi routers. This approach
allows for fast and reasonably accurate location reports in areas with numerous wireless
access points, particularly in the in-door environment [10]. In addition, the device can also
obtain the location via IP-based geolocation [52] when the accuracy is less critical [79].

How to access location data. Android apps can read locations from GPS receivers or the net-
work by claiming the associated provider: (i) the gps provider, requiring an app to hold ACCESS
_FINE_LOCATION permission, that can read the current location from the GPS sensor, (ii) the
network provider, requiring the ACCESS_COARSE_LOCATION permission that can obtain a less ac-
curate location from the network with less battery consumption, and (iii) the passive provider
that simply collates the most up-to-date information from the other two providers depending
on the held permissions without draining the battery. In addition, apps can request to retrieve
the updated location data periodically by setting both time and distance intervals between two
consecutive retrieval attempts. For example, the Android API requesttLocationUpdates can be
used to periodically retrieve updated locations by configuring two parameters, i.e., the minTime
that determines the minimum time interval (e.g., 1,000 ms) between two consecutive location data
access (frequency) and the minDistance which depicts the interval of data access in terms of
distance (e.g., 100 m). Moreover, apps can use Fused Location Provider APIs [35], which is part of
the Google Play Services APK working with Google Mobile Service (GMS), to configure its time
interval in receiving periodical location updates, such as using locationRequest.setInterval
and locationRequest.setFastestInterval to obtain location updates every 5 seconds and 1
second, respectively.

2.2 Data Minimization in Location Privacy

Being effect in 2018 in the EU, the General Data Protection Regulation (GDPR) expresses the data
minimization principle in Article 5(1)(c) that personal data should be “adequate, relevant and limited
to what is necessary in relation to the purposes for which they are processed” [44], which also complies
with Article 4(1)(c) of Regulation (EU) 2018/1725 and the upcoming Proposition 24 of California
Consumer Privacy Act (CCPA). Specific to location data, which is widely recognized as a major
piece of personal data, American Civil Liberties Union (ACLU) has specified that “only necessary
information is collected” [47] (a.k.a., the minimum usage policy), especially when apps are capable
of accessing locations, such as COVID-19 contact tracing. While mobile operating systems (e.g.,
Android) keep evolving and proposing mechanisms (some of which are optional) to address this
privacy violation, their effectiveness in practice still remain largely unknown.
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3 OVERVIEW
3.1 Annotating the ALHA

We have to build a ground truth dataset for the ALHA to characterize apps performing such an
aggressive behavior. However, to the best of our knowledge, there are no existing public datasets of
the ALHA, nor approaches to identify such an app. Therefore, we use the qualitative open-coding
techniques [92] to determine whether an app sample is an ALHA or not. More specifically, four
mobile security researchers were asked to annotate all aggressive apps independently following
the ALHA annotation guide? as elaborated below.

Annotating LBS(es) of an app. The whole annotation procedure starts with annotating LBS(es)
of an app. The annotators are asked to install the apps on an instrumented Android device, grant all
permission, and manually explore and trigger functionalities in the apps with their best efforts. If
noticed invocations of Location.getLatitude and getLongigude, they will record and describe
the found LBS and the associated minTime and minDistance. In cases that the annotator cannot
identify any service being provided after the location invocations (e.g., the invocation took place
immediately after location permission was granted at app launch), the LBS is recorded as “no LBS
provided”. For all LBSes, the annotators independently code all the LBS descriptions using the
Grounded Theory [92] and compare their final code books using inter-coder agreement (following
the method used in [70]), record each LBS’s corresponding LBS category. For example, an LBS of
a weather app could be recorded as “Uses location to decide which city’s weather information
should be displayed”, and the LBS category assigned to it could be “City Weather”. Next, the
annotators annotate each single LBS as aggressive or not using two rules: (i) if the LBS does not
need constant location collection (e.g., LBS that “Uses location to auto-fill zipcode”) and (ii) if the
LBS needs constant location collection, but the minTime and minDistance parameters are not
adequate, relevant, and limited to what is necessary in relation to the LBS. For example, if the LBS
“Uses location to decide which city’s weather information should be displayed” uses 0 for both
minTime and minDistance and the minimal value used by the other apps in the “City Weather”
LBS category is larger than 0, this LBS is annotated as aggressive.

Annotating ALHA. After each LBS is annotated, an app could be annotated based on its LBS
annotation. For apps only having a single LBS, the app will be annotated as aggressive if its LBS is
aggressive. When an app has more than one LBS, different LBSes within the same app may share
the minTime and minDistance values, due to the common programming pattern of setting a global
shared Location variable. As a result, the parameter value fulfilling the most demanding LBS in an
app is used for the other less demanding LBSes as well, causing them to be annotated as aggressive
during the LBS annotation step. To avoid overestimating the aggressiveness of an app with multiple
different LBSes, the annotator only labels an app as aggressive if its most demanding LBS (i.e., LBS
having the smallest minTime and minDistance values) is labeled as aggressive. Hence, we consider
the result as the “lower-bound". We detail the statistics of the dataset in §5.1.

3.2 Challenges and Insights

Based on our observations in annotating the ALHA uncovered during the initial manual aggressive
app investigation, the automatic detection approach should address several challenges. In the
following, we list these main challenges and present our corresponding insights to address them.
How to uncover location access and usages. It is challenging to automate the process of un-
covering the behavior of location access (i.e., the accuracy of the location and the frequency of
retrieving up-to-date location) because of the diversified implementations in practice, such as using
system APIs or customized methods that are specific to developers. Specifically, if an app uses

2The detail of the annotation guide is available at https:/sites.google.com/view/aggressive-app/app_annotation_guide
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system APIs, we need to resolve the input values that may not always be visible at the invocation
of these APIs at the code level. As such, we have to trace these inputs across the whole app to
obtain their values, and it could be challenging to precisely trace them across different components
of an Android app. On the other hand, with respect to customized methods, it could be difficult
to analyze them in a generic way when coming to large-scale analysis.

Fortunately, we find that it is popular (around 60% apps requesting location permission) among

apps to use the system-provided APIs to periodically retrieve location data. Although inputs to
these APIs may not always be directly visible, these inputs (e.g., minDistance and minTime) are
in the form of string, float, and long whose value could be resolved by value set analysis
(VSA) [23]. Therefore, without loss of generality, we choose to use VSA [23] to resolve the inputs to
the dedicated system APIs allowing apps to receive location updates periodically. We acknowledge
that some apps may use non-system APIs to retrieve Location data that are not covered by our
method, we discussed this limitation in (§6).
How to recognize fine-grained LBSes. It is non-trivial to automate the process of recognizing the
LBSes an app provides. LBSes in real-world apps are heterogeneous (e.g., address auto-fill, weather
forecasts, and local news), and they are often integrated deeply inside the primary functionalities of
an app (e.g., a car insurance app will geo-tag the photo a user takes to report an accident), or even
serve as a hidden component (e.g., user profiling or account login tracing). Thus, LBSes are often
absent in the documentation of an app (e.g., app store description, privacy policy, and UI text). Even
in cases when an LBS is documented, its description could be too vague to distinguish different
LBSes (e.g., “the app provides services based on user’s location” instead of explicit descriptions such
as “the app will use your location to find nearby churches and non-profit organizations”).

Therefore, we propose a new approach combining techniques from both program analysis and
representation learning to recognize LBSes by determining the semantics of fine-grained location
data usage at the code level without relying on the unreliable app documentation that is required
in previous works [76]. The key observation is that different apps providing the same type of
LBSes often have semantically similar location data-flow paths. For example, in the LBS using the
user’s current location to auto-fill the address and zip code, the corresponding data-flow path starts
from fetching the user’s latitude and longitude and then using these two pieces of data to invoke
the Android API Geocoder.getFromLocation or Geocoder.getFromLocationName to obtain the
user’s address. In addition, this usage similarity enables the representation learning technique to
capture the semantics of LBS-related APIs among different apps even with different functionalities
and further ensures that the data-flow paths with similar semantics will have similar vectors for
quantitative analysis. These unique features make it possible to detect LBSes through a combination
of code analysis and representation learning.

How to identify aggressive collection. Similarly, it is also challenging to automatically identify
whether an app is an aggressive location collecting one. It is hard to obtain all the domain knowledge
required for judging whether a collection behavior is aggressive given the corresponding LBS.

We address this challenge by applying the outlier detection approach that looks for intrusive
outlier location collection behavior among apps providing the same LBS. Its advantage is that we
can avoid summarizing the specific requirements for an LBS regarding location collection as a
standard for identifying aggressive behaviors, given the inconsistent implementations across apps
for the same LBS and the variety of LBSes.

3.3 Scope and Assumption

In this study, we focus on the location data-flow paths starting from retrieving location data to
sending them to the outside (e.g., servers) that are implemented at the Java bytecode level in Android
apps at scale. Other aberrant location access channels such as using WebView or native libraries are
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Fig. 1. The workflow of LocATIONSCOPE.

out of scope. In addition, our tool is resilient to many code obfuscation techniques (e.g., renaming)
but may fail in cases when system APIs in Java are obfuscated (e.g., using reflection). Though we
wish to extend support on the above cases, they are out of the scope of the current version of our
framework. In addition, since this study would like to comprehensively analyze periodical location
access in both spatial and temporal frequency dimensions, APIs (e.g., Fused Location Provider APIs)
that cannot provide both information is out of the scope of this study.

4 DETAILED DESIGN

This section presents the detailed design of LocATIONScOPE, which consists of three key phases as
shown in Figure 1. Specifically, (i) in the first phase, it takes an app as input to uncover its associated
data-flow paths that indicate how a piece of location data is retrieved and processed (§4.1); (ii) in
the second phase, it recognizes the location-based service by embedding its associated location
data-flow path; and (iii) in the last phase, it identifies the ALHA by first clustering location-based
service groups, where each group consists of apps providing such a service, based on the semantic
similarity of the embedded location data-flow paths from its contained apps, and then applying an
outlier detection algorithm over each location-based service group (§4.3).

4.1 Uncovering Location Data Usages

The objective of this phase is to uncover how an app uses its periodically retrieved location data.
To this end, it has to understand how an app (i) retrieves location data periodically from the system
and (ii) processes its retrieved data.
Understanding how apps retrieve location data. An app can configure how fast (frequency)
to periodically retrieve the location data at which granularity (accuracy) based on system APIs
provided by the Android. Since both accuracy and frequency are specified by configuring the
input values to specific parameters (i.e., provider, minTime, and minDistance) of relevant system
APIs, the way an app retrieves location data can be understood by resolving those input values.
Considering these values may not always be resolved at the place where the APIs are invoked in
the code (they could be declared somewhere else), it is necessary to trace them across the whole
body of the code to understand how they are generated, and then resolve their values accordingly.
While the technique of the value set analysis (VSA) [23] appears to be suitable for tracing a
given variable in the code to calculate its possible values, it cannot directly apply in our work
because it targets a different platform. As such, we build our own technique to accomplish this task.
Specifically, the first step is to build an inter-procedural control-flow graph (ICFG) for all methods
within an app where the nodes are the instructions and the edges indicate the corresponding
control-flow transfers. Next, a target parameter (e.g., V@) will be traced backward along this ICFG
to its initialization place. Meanwhile, an inter-procedural data-dependency graph (IDDG) will be
maintained to record all computations related to this parameter in the reverse sequence. When the
tracing stops, associated computations that have been recorded in IDDG will be repeated in the
correct order to resolve the value of the target parameter.
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Uncovering how apps process location data. Having understood how an app retrieves the
location data periodically from the system by resolving relevant parameter values, the next task
is to uncover how such an app processes its retrieved location data within the app before being
sent to the outside (e.g., servers). Since this process can be represented as a path that starts from
reading the up-to-date location data periodically from the operating system and ends at system
APIs sending them out, this task could be formalized as identifying these location data-flow paths
which are often treated as location leaking paths in the literature [19].

In particular, when using the Android APIs (§2.1) to retrieve location updates, the Android
will associate a Listener to a Location object allowing such an object to retrieve periodical
location updates as configured, or sending an Intent carrying the location data to a specific
component for further processing. Since the Listener or the Intent is a parameter of the re-
lated system APIs, we would use the similar technique above to trace the parameter in the
backward direction to identify the object, and then analyze the internal callback functions (e.g.,
onLocationChanged) of that object to pinpoint the starting point where the location data will be
processed (e.g., Location.getlLatitude). Finally, we apply static taint analysis by setting such
points as taint sources and defining the taint sinks which indicates the collected data will be sent
to the externals (e.g., remote hosts), to capture location data-flow paths that are of our interest.
Example.. Figure 2 shows a running exam-
ple that illustrates the core workflow of this

public void runTask() {

component. First, in step @, the app sets the i, . B o e it ara) (
minimum time interval as 0 second and the |® i s, Memse e ) (e
minimum distance interval as 0 meter for its ° ° e

request to the system to read the location data
from the GPS provider without interruption.
Next, in step @, according to the listener as-
signed to react to location updates, this com-

public void or

JSONObject v7 = this.urlRequester
-requesturl(vs) ;
this. showOnMap (v7)

| B

this.mLoc:
this. loadSurr

x:
o 5000) ;

o

ponent is able to identify an implicit location

data-flow from the gpsListener to the call- 1wt roerioni '
back of onLocationChanged method. In this
callback, the location data is further processed
by the method loadSurround in step ®, and
this method is invoked immediately in step @ where the location is used to generate a string
value. Then, this generated string value goes into the method of urlRequester.requestUrl in
step @ which is the end of this location data-flow. Finally, this component outputs this location
leaking path in step ® to complete its task.

Fig. 2. Example of uncovering location data usages.

4.2 Recognizing Location-based Services

Having uncovered location data usages of apps, the second phase investigates why an app uses
its retrieved location data in such a way from the perspective of its provided LBSes. To this
end, in the absence of prior knowledge and the vague expressions of fine-grained LBSes in app
documentations, it aims to recognize the associated LBSes from data-flow paths leaking location
data that are uncovered in the previous phase. In particular, it adopts a novel approach that leverages
techniques from representation learning which embeds each location data-flow path as a numeric
embedding to abstract its LBS semantics.

Formalizing location data-flow paths. Considering each data-flow path that is uncovered
in the first phase is outputted as a vector of functions, it is necessary to build a signature for
each function to uniquely represent such a function to further ensure each data-flow path is
distinguishable. To this end, the signature for each function is generated as a combination of
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Algorithm 1 Developer-defined function translation Algorithm 2 Location Usage Analysis Process

1: procedure TRANSLATE(Capp;) 1: Lay < {} > The set of all call paths
2: G « callgraph(app;) 2: for app; in Apps in the same category do
3 L capp; > Initial Location usage embedding ~ 3: for ¢; in callpath(app;) do > Data flow call paths
4: Firansiated < [] > For function detection ~ 4: L; « Translate(c;)
5: while 3finL € Fpeveloper do 5: Ltemp < [1 > Temporary variable to store new L;
6 fdeveloper « the first developer-defined function in L 6: for f in L; do
7 Fsubstitute < [] 7: Vi« API_Embedding(f;)
8: for f; in functions invoked by fyeveloper in G do 8: Liemp < append(Vy,)
9: if f; € Fpeveloper then 9: end for
10: if f; € Firansiateq then > Recursive detected 10: L; < GAP(Ltemp) > dimension reduction
11: Ftransiatea < [] >Reset 11t Lap < add(L;)
12: else 12: end for
13: Fsubstitute < ﬁ 13: end for
14: Firansiated < append(f;) 14: Mapping(L;, Lia;) < DBScan(Lay) > L; belongs to Lig,
15: end if 15: for app; in Apps in the same category do
16: else 16: LBSapp; — {} > Initial empty set
17: Fsubstitute — append(f;) 17: for c; in callpath(app;) do
18: end if 18: L; « find c;’s corresponding L; in Laj;
19: end for 19: Lia; < Mapping(L;, L;q;)
20: subsitute f; with Fsupstizute 20: LBSapp; — add(Lidi )
21: end while 21 end for
22: end procedure 22: end for

its package name, class name, method name as well as its all parameter types, and the return
value type, all of which are concatenated in this order with the symbol “.” for separation as
Package_name.Class_Name.Method_Name (Parameter_Type, ...).Return_Type.Accordingly,
a path c inside an app F,,, can be denoted as ¢ = [fi, f5, ...], where f; is the i, function signature
in the path c.
Standardizing functions in data-flow paths. At a high level, each function in a location data-flow
path ¢ could be either a custom function belonging to specific developers, Fpeyeloper» OF a system
API, Fapr, which could be standard Java or an Android API. While standard Java and Android
APIs are rarely obfuscated because the relevant ramification might hinder normal functionality,
custom functions are highly likely to be obfuscated (e.g., renaming) which could affect the accuracy
and reliability of its functional semantic extraction. To avoid this uncertainty, all functions in a
location data-flow path will be standardized as standard Java or Android APIs following procedures
shown in Algorithm 1. Specifically, it first extracts the call graph of a given app (line 2) where each
node represents a function signature f and each directional edge from f; to f; represents that f;
is invoked inside f;. When encountering any function signature f; that is not in Fap; (line 9), f;
will be substituted with the sequence consisting of all of the functions invoked inside the body of
function f; (line 17-20). Since a single round of substitution may also introduce functions belonging
to FpevELOPER, an iterative substitution procedure is enforced until all the function signatures in
this path c are functions from F4py (line 7-20). Note that recursive functions in Fpgyeroper are
opted out of the substitution process to avoid infinite loop (line 10-11).
Embedding location data-flow paths. As mentioned in §3, it has been observed that similar sets
of system APIs (F4py) including standard Java and Android APIs are often present in the location-
data flow paths that implement the same LBS across different mobile apps, which indicates that a
specific LBS could be recognized by the set of system APIs appeared in its associated data-flow
path. Inspired by this observation, the semantic of an LBS can be represented by the combination
of semantics of a set of system APIs.

Algorithm 2 shows the main procedures of the location data-flow path embedding. First, given an
app, its location data-flow ¢ = [fi, f2, ...fm] is extracted and further translated into a standardized
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function list (line 2-4). Since the standardized functions can be treated as word tokens, a represen-
tation learning algorithm (i.e., word embedding) can be resorted to generate length-unified 1 X N
numerical vectors, which are then concatenated to construct an M X N matrix where M is the
number of APIs in the standardized data-flow path (line 6-9). Considering the different number
of system APIs in different data-flow paths, which makes the embedding matrix of each path in
different shapes hindering similarity comparisons in the following steps, an M X N matrix will be
finally squeezed to a 1 X N numerical vector using the GAP technique [53] (line 10) by calculating
the column-wise mean.

Example. The main procedures of this compo-

nent are illustrated in Figure 3. First, a developer- ~ ;------=-=====-==-=--m-mmom- “
defined function (i.e, loadSurround) is stan-
dardized as a bunch of standard APIs pre- | | mweciicimm:
sented in the left rounded rectangle in step |

@. Next, in step O, each standard system or | e
Java API (e.g., Landroid/location/Location; °

->getLatitude()D) is embedded following a
trained model as a vector of N elements. Since
this path contains M standard APIs, in step @,
it first constitutes an M X N matrix, and then
reduces this matrix to a 1 X N vector in step @. Fig. 3. Embedding location data-flow paths.
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4.3 Detecting Aggressive Usages

Having uncovered location data usages and rec-

ognized LBSes via embedding their data-flow paths, the last component aims to detect mobile apps
that aggressively retrieve location data in the wild. To this end, this component follows the line of
privacy violation research that detects a violation in a mobile app, in the absence of outstanding
and well-acknowledged standards, by comparing its consumption of privacy-related resources
with its peer apps that provide similar functionalities (e.g., AAPL [64]). Specifically, it proposes a
novel method to identify peer apps of a target app by comparing their provided LBSes based on the
associated semantic similarity. Next, within each group of apps, an aggressive app is identified by
applying a semi-supervised classification method on the minTime and minDistance parameters
configuring how an app retrieves location updates.

Clustering similar location-based services. Similar LBSes are identified by clustering their
associated embedding data-flow paths based on their semantic similarities. Considering the total
number of LBSes is unknown in advance, an unsupervised clustering method is preferred because
it can automatically identify clusters of similar inputs without specifying the number of clusters;
therefore, this component uses DBScan [38] as the clustering method. Specifically, the cosine
similarity, which is defined as S(L;, L;) = L; - L;/(||L;||||L;||), is used as the distance metric between
the two embeddings L; and L;. After the clustering, each L; will be assigned a cluster id, IDy,. Since
it is possible for an app to provide multiple LBSes at the same time, for example, an car insurance
app can retrieve the location to auto-fill zipcode, and also geo-tag watermarks on photos of the
vehicle to show its location, each app could be labeled with multiple LBS cluster ids. Accordingly,
the LBSes in an app can be expressed as LBS(app) = {IDr1, 1Dy, ...}

Training location usage classification model. Having clustered similar LBSes, the next task is
to detect the aggressive LBSes in each LBS cluster where we need to train a model. Specifically, it
consists of the following steps to train a supervised classification model based on a training data
set containing 32 aggressive apps and 32 non-aggressive apps and applies the trained model to
detect aggressive LBSes within each cluster.
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Provider Freq. Manual Inspection Provider Freq. Manual Inspection

S u S oy

EC - 3 2 2% Eiz 3

App Name Oz QI LBS Description z z App Name Oz B AD LBS Description z Z

56.FBS v |v|v| 0 |0]|v|Nearby POI vi|Xx Playz viv|ix|o]o|lx]- X|-
Affirmations V[V | X | 0 |0]|v |Nearby safety issues v [X  Quadrant2 V|V |V | 0 | 0|V |Helpinemergency vi|X
Asian Turbo V| X |X|0]0]|v|Auto-fill address viXx Quaran For All V|V | X| 0 | 0| |Direction to quaran X|-
Corq V|V | X| 0 |0|V |Nearby events viX Quatroamigos V|V |V | 0 | 0|V |Distance to others vi|Xx
Door Ding Defender v|v|v| o |o|v|Windspeed V/|X  RTP Noticias v|v|v| o |o|v|showonmap x|-
Easy Markets VIvVIX|o|o|lX]|- X|- Sabbar vV |V |V | 0 | 0|V |Distance to others vi|Xx
Emarits Halall VvV |V | X |10 0|V |Search users in a city viXx Saloner X | X |v|0.1]| 0|V |Nearby salons vI|X
Feira vVivivV]|o|olX]|- X|- SchoolCNXT VI ivV|X|o]o|Xx|- X -
Goodwill Rewards V| X |X|0|0]||Restrict services viXx Sikh World V|V |V | 0 |0V |Find gurudwara vi|X
Great Date Ideas vViviv|o|olX]- X\ - Speaking Robots VIV X|0]|0|v]- X|-
IFTA 2013 v |v | x| 0 |0]|¢|Location-related ad Vv |X  Spice Camera CS v V| X | 1 |0|V |Geo-tagging photos v|x
Investing vivix|olo|x|- X |- Urban Usher Transportation | [v/| X | 0 [0 |v/|- x|-
Mosquito Alert v |v | x| 0| 0| |Nearby mosquitos v |Xx  Vivance v |v|v | 0 | 0|V |Show store location Xx|-
NAO 1999 V|V | X| 0 |0|¥ |Location-related ad v/ | X  Wefun Reader VIiVIX|1]|olXx]|- X|-
Nature et aromes V|V | X| 0 |0|¥ |Nearby branch v |Xx  Wooask v |V |V]| 0 | 0|V |Distance to others viX
Ongo e-Money v |v|v]| 0 |0]|v|Nearby stores v|x  Yumi v|v|x| o |0|v|Nearby users v|x

—

Table 1. Details of the 32 ground truth aggressive apps. Freq: Frequency; Loc: Location; Dist: Distance; Per:

Periodical Location Acquisition; ¢: presence; X: absence; -: N/A.

Pre-processing. The literature (e.g., [43, 57]) has well acknowledged two special LBSes in apps:
advertisement that are primarily used for increasing revenue by presenting advertisements, and
analytics services that often help developers measure user activities and app performance. In
particular, they are special because they work independently to other services that an app provides
(i.e., they are distributed via 3rd-party libraries, and the same library often behaves the same in
different apps), and the majority of them have incentives to harvest locations [57] aggressively.
Therefore, we profile their location retrieving behaviors separately and exclude them from the
following classification steps since they cannot represent the purposed functionalities of an app. To
recognize these services, it adopts a similar approach presented in [43] that first uses LibRadar [3]
to identify 3rd-party libraries from an app and then compares these libraries with the list of known
advertisement and analytics libraries that are released from reliable sources (e.g., [11, 57]).

Data selection. The second step is to select training data apps to constitute two groups: a positive
group and a negative group, to train the classification model for each LBS group. Specifically, the
positive group is built with 32 aggressive apps we found during an initial manual investigation
(Table 1), annotated following the aggressive app annotation guide (§3.1). In particular, annotators
achieve a high agreement on these 32 aggressive apps, the Cohen’s Kappa agreement measurement
is 1.0. We chose 32 apps since 32 is the total number of aggressive apps we found during the initial
manual exploration of the app samples. One could choose a larger number as more and more
aggressive apps are discovered following our method, increasing the diversity and coverage of
the training data. 32 is used in our case due to the limited labor capacity we had for analyzing
app samples. In respect of the negative group, it consists of 32 non-aggressive apps that are auto-
selected from the target LBS cluster where there are 16 apps that specify the top 16 largest minTime
values and the rest 16 apps that are configured with the top 16 largest minDistance values. The
intuition behind this selection rule is that apps with the largest parameter values represent the
most conservative location-collecting behavior, thus, most likely to be non-aggressive apps.

Feature engineering. The classifier uses two fundamental features (i.e., minTime and minDistance)
that describes the periodic location-retrieving behavior of an app. However, the preliminary study
identifies that these two features vary in a scale ranging from extremely large ones (e.g., 3,600,000
seconds) to small values (i.e., 0 second) that request as fast as possible, which can affect the
performance of the numeric sensitive classifier. To mitigate this, the following two normalization
techniques are applied:

d PP X; = &7 (F(x1)) 8

X; = softmax(Max(X) — X;) (2)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 18. Publication date: March 2023.



18:12 Haoran Lu, Qingchuan Zhao, Yongliang Chen, Xiaojing Liao, and Zhigiang Lin

The first equation is to re-scale values in the feature vector X to a uniform distribution in the
range between 0 and 1 using the quantile normalization method [12]. Specifically, F and ® are the
cumulative distribution function of the feature vector itself and uniform distribution, respectively.
The second equation is to apply the so ftmax normalization technique [14] on the output of the first
equation, and the outcome will be fed into the classifier. Since the second equation reversed the input
by subtracting Max(X;) with X;, comparing to large values, smaller minTime and minDistance
values will be distributed in a more crowded feature range, such that limited effects, are induced in
cases such as the time intervals are different in 1 or 2 seconds.

Post-processing. After processing data through the above procedures, a k-nearest neighbors
classifier [9] is trained to identify aggressive behaviors, and we choose this algorithm based on its
performance compared to other popular classification algorithms (details of this comparison are
pushed to §5.2). While its direct classification results achieve high accuracy, an additional post-
processing step is still taken to reduce false positives. These false positives result from the nature
of both positive and negative example apps in the training phase where they may share the same
value of minTime and minDistance, making the classifier ambiguous in the borderline examples.
Therefore, it may mistakenly recognize a normal behavior as an aggressive one. Accordingly, this
post-processing reduces such false positives by unflagging those recognized aggressive ones that
contain more conservative behaviors (i.e., larger feature values) than the negative ones.
Detecting aggressiveness. After applying the above method to each LBS group, apps’ aggressive
behaviors in each of its LBSes are identified. Since an app could contain multiple LBSes, it is
possible that some of its LBSes are labeled as non-aggressive, and some labeled as aggressive in
other groups. We could simply label an app as aggressive if any of its LBS is aggressive, but doing
so would introduce false positives. The reason is that multiple LBSes in the same app may rely on
the locations obtained from the same location request (e.g., setting a global location request is a
common programming pattern, we found 2924 aggressive apps providing more than one LBS using
such a pattern), causing some LBSes’ corresponding values of minTime and minDistance being
affected by other more demanding LBSes in the same app. When the less demanding LBS is reusing
the location request intended to serve the more demanding LBS, it will be detected as an aggressive
LBS due to the higher precision and frequency required by the more demanding LBS; however,
the app should not be considered as aggressive. For instance, the same location data request in a
restaurant app is used to provide two LBSes: i) navigation to the nearest branch and ii) auto-filling
zip-code based on the user’s coarse location, and the second LBS should not be considered as
aggressive even if it’s using the more precise location information intended for navigation. As a
result, to precisely identify aggressive apps, a strict and conservative policy is adopted. That is, an
app will not be labeled as aggressive if any of its most precise tracking behaviors is not aggressive
in the LBS cluster it belongs to.

5 EVALUATION

This section presents the evaluation and analysis of LocATIONScOPE. It first describes the setup,
including experiment datasets, implementations, and environment (§5.1), next evaluates and ana-
lyzes the effectiveness of our proposed system (§5.2), and finally shows its novel findings (§5.3)
from the detected aggressive location tracking apps with three case studies (§5.4).

5.1 Experiment Setup

Datasets. This work constitutes five different datasets in total, and the primary dataset is the
Google Play Free Apps Dataset (Dr) which consists of 2.05 million free apps that are crawled from
Google Play by the end of 2019 and 2.16 million free apps also crawled from the Google Play during
the year of 2021. Derived from Dp, there are four datasets that are used for training location the
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usage classification model, evaluating the effectiveness of LBS recognition in two different levels,
and evaluating the end-to-end aggressive app detection effectiveness. Specifically:

o Ground-truth dataset of Aggressive Apps (Da): D4 is constituted to understand the true positive
and false positive (non-aggressive but falsely detected as aggressive) during the end-to-end
evaluation of our aggressive app detection pipeline. It consists of 200 apps that are randomly
selected from the aggressive apps detected in D, which took each annotator around 240 hours
for labeling (following the aggressive app annotation guide 3.1), yielding the Krippendorft’s
alpha coefficient of 0.94.

o Ground-truth dataset of non-aggressive Apps (Dn ): Dy is constituted to assist in evaluating the
false negatives (indeed aggressive apps but detected as non-aggressive) and true negatives
in the end-to-end evaluation of the aggressive app detection pipeline. It included 100 apps
randomly selected from apps not detected as aggressive by our pipeline. It took each annotator
around 120 hours to label them following the annotation guide 3.1, yielding the Krippendorft’s
alpha coefficient of 1.0.

e Ground-truth dataset for LBS Recognition at LBS-level (Drr): Dy is constituted to evaluate
the effectiveness of recognizing LBSes from their associated location data-flow paths. It
consists of 266 location data-flow paths manually labeled by two annotators from 34 apps
randomly selected in D, covering 83 LBS clusters. The annotators are asked to check whether
two location data-flow inside the same LBS cluster are indeed used for the same LBS. Each
annotator took around 60 hours to label apps, yielding the Krippendorff’s alpha coefficient
of 0.99, only samples labeled as correct by all annotators are considered correct.

o Ground-truth dataset for LBS Recognition at App-level (Dy4): D4 is constituted to evaluate the
effectiveness of recognizing the same LBS among different apps. It consists of 295 apps manu-
ally labeled by two annotators randomly picked from D, which contains 157 LBSes. Annota-
tors are asked to label whether two apps sharing the same LBS clusters apps provide the same
set of LBSes. It took each annotator 70 hours for labeling, yielding the Krippendorff’s alpha
coefficient of 0.99, only samples labeled as correct by both annotators are considered correct.

Implementation. We have implemented a prototype of our proposed solution atop several tools
instead of developing from scratch. Specifically, we optimized and tuned FlowDroid [19], Soot [15],
and AndroGuard [5] to perform value set analysis and identify data-flows of location data leakages.
In addition, we build a tool atop API2VEC [73] to generate the embeddings of Java and Android
APIs to recognize location-based services. Specifically, we train the API embedding model over
the decompiled code from the top 500 Android apps based on the number of their installs. This
trained model embeds each system API as a 1 X 300 vector (the same as the default setting in the
API2VEC [73] which has been proved as a great balance between efficiency and effectiveness). In
addition, we also leverage scikit-learn [13] to cluster location-based services and identify outliers
during aggressive app identification. In particular, in respect of parameters used in DBScan, we
choose 0.9 for eps and 5 for min_samples.

Experiment environment. We conducted our experiment on several groups of machines with
different computation power in parallel. Specifically, all experiments analyzing Android apps from
2019 were conducted on our workstations, which are equipped with AMD EPYC 7251 CPU with
256GB memory, and the rest of the experiments relating to code embedding processing were
conducted on six desktops running with an Intel i7-7700 CPU and 32GB memory. In respect of apps
from 2021, all experiments were conducted on two servers, each of which is equipped with two
Intel E5-2695 v2 CPUs alongside 192GB memory.
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5.2 Effectiveness

Comparison of different classification algorithms. As mentioned in §4.3, we selected the
k-nearest neighbors as the algorithm to classify location retrieving behaviors because of its better
performance compared to other popular classification algorithms. In this evaluation, we present
the details of such a comparison to support our decision. Specifically, as shown in Figure 4, at first,
5 different algorithms (i.e., Support Vector Ma-

chine(SVM) [50], DT [63], Quadratic Discrimi- 0

nant Analysis (QDA) [49], Naive Bayes(NB) [68], —
and K-Nearest Neighbor (KNN) [77] have been kel -
chosen to compare their performance over the SR - TR L
training app dataset used in (§4.3). The perfor-
mance metrics used are the F1-score and Accu-
racy. Figure 4 shows that the KNN methods have
relatively high accuracy compared to other al-
gorithms. As such, we choose KNN over other 2
algorithms. In addition, we also compare the F1-
score by assigning different k values (i.e., 2, 3, and ;
4), and Figure 4 also shows that K=3 achieves the S & &

best performance. Therefore, we finally select

k-nearest neighbors (k=3) as the classification  Fig. 4. Comparison of classification algorithms.
algorithm in this work.

Effectiveness of LBS identification. The effectiveness of the main objective of this work, i.e.,
identifying aggressive apps, is based on the accuracy of LBS recognition via embedding associated
location data-flow paths. In order to evaluate the effectiveness of LBS recognition, we design a
two-level (i.e., LBS-level and app-level) evaluation method. In particular, the LBS-level evaluation
is to justify whether two location data-flows that are clustered into the same LBS group based
on their embedding similarity actually represent the same LBS, and the app-level evaluation is to
examine whether apps that are identified as sharing the same set of LBS clusters indeed provide
the same LBSes. This two-level evaluation shows that the proposed algorithm is effective:

Percentage (%)
3
L

o LBS-level evaluation: Among the 266 location data flows 262 (98.4%) are correctly clustered,
and the 4 wrongly clustered data flows that are clustered into the same cluster belong to
4 distinctive apps. Upon investigation, while these 4 data flows indeed share similar LBS,
which draws markers on a map, they contain subtle differences. Specifically, two of them use
the marker to indicate the user locations for real-time navigation, and the other two use the
marker to indicate nearby point-of-interest (POI) locations without navigation.

App-level evaluation: If two apps are labeled as providing the same set of LBS (e.g., both apps
use locations to provide directions to the store and auto-fill zip code), both apps are true
positive apps (TP); otherwise, they are both false positives (FP). The results show a precision
of 90.5% where there are 28 FPs and 267 TPs. Further analysis shows that 22 out of the 28
FPs are apps never trigger the paths identified by our tool (i.e., dead codes), and the rest 6
FPs are from groups that are loosely clustered.

Effectiveness of aggressive app identification. Since we depend on an automatic pipeline to
identify aggressive apps, its effectiveness needs to be evaluated. It turns out that in 200 apps that
are detected as aggressive in D4, 194 apps are true positives, showing a 97% precision (TPT f;P). In
respect of the 6 false positives, all of them are due to the limitation in the FlowDroid where paths
are not captured completely, aligned with the observation made in [27], resulting in the LBS not
being captured by our pipeline. Among 100 apps that are detected as non-aggressive in Dy, 14
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apps are actually aggressive (14 false negatives and 86 true negatives), showing a false negative
rate (%) of 6.7%. All 14 false negatives do not rely on location to work but still collect locations
(e.g., a puzzle game that does not rely on the geo-location of the user to work properly) without
interruption (minTime = 0 and minDistance = 0). Our pipeline did not capture them since 0 is
already the maximum minTime and minDistance value used by apps in their LBS cluster.
Run-time performance. Among three components in our proposed workflow, the most time-
consuming part is uncovering location access and usages, which include running value set analysis
to resolve location collection parameters and taint analysis using FlowDroid [19] to detect location
leakage data-flows where its default settings and a 10-minute timeout strategy are used. Particularly,
it took around 1 week and 3 weeks to conduct value set analysis and taint analysis on apps collected
in 2019 and almost 4 days and 7 days on apps in 2021 due to the differences in computation power
of the testing environments. In respect of the other two components, it took around 3 days to train
the embedding model, and then used this model to embed location leakage data-flow paths in 3
days and 1 day for apps from 2019 and 2021 respectively, and an additional roughly 20 hours to
cluster embedded paths and detect outliers in apps from both datasets.

5.3 Findings

5.3.1 Overall Statistics. As shown in Table 2, we have identified 590,599 apps that request per-
missions for fine-grained location data access from totally 2,164,859 free apps collected as of 2021.
Compared to apps in 2019, the number of apps requesting fine-grained location permissions has
increased by 15.03%, alongside the 5.04% growth of free apps. In addition, within the apps from
2021 with fine-grained location access permissions, we have identified 337,790 (57.20%) apps that
register system APIs to periodically retrieve location updates, a 12.43% growth compared to apps
from 2019. Moreover, among these periodical location collecting apps from 2021, we found 50,178
apps that can potentially leak users’ location (e.g., sending them to an app’s back-end) where 14,091
of them have been recognized as aggressive apps.

Interestingly, there is a decrease in the number

of apps associated with location leakage and recog- Ttem | 2019] 2021
nized aggressive apps, 48.93% and 63.58%, respec- # Apps Collected | 2,055,822 2,164,859
tively. The main reason for this decrease is the in- # Apps W/ Fine Loc. Permission | 513,428| 590,599
creased failure rate of FlowDroid in location leak- # Apps Register Loc. Updates | 301,341| 337,790
age detection, i.e, the failure rate increased from # Apps W/ Loc. Leakage 97,870| 50,178
42.8% to 73.5% in a 10-minute timeout. FlowDroid f‘/’\gggii‘;;/ App 38,2651521; ) 4,163?
cannot finish finding paths in more than 90% of Avg # LBSes/App 1.06 1.57
failed cases, and the rest are due to the insufficient Table 2. Overall Statistics.

memory space assigned to run each app (i.e., 20

GB). These observations comply with related works [20, 97], which pointed out the increase in
time consumption and memory space requirement of FlowDroid when analyzing new and larger
Android apps. Our study reveals the growing trend of aggressive location harvesting in Android
apps through a longitude study of the aggressive apps presented later in this section.

5.3.2  Aggressive Location Collection Apps.

Distribution and popularity. Aggressive apps are not distributed uniformly across different
categories, and there is a slight shift from 2019 to 2021. In 2019, 34 categories contain aggressive
apps, the number dropped to 33 in 2021. As Figure 5 depicted, in both 2019 and 2021, the same 6
categories together account for more than 50% of aggressive apps and there are 12 categories each
contributing between 1% to 5% of aggressive apps. While the number of categories containing less
than 1% apps dropped from 17 to 15 from 2019 to 2021.
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With respect to the popularity (Figure 6), we have identified aggressive apps with up to 5
million installs, and all these apps together can impact up to 2.5 billion users globally based on
their install numbers in the Google Play. Moreover, it shows that the installs of aggressive apps
shift forward from 2019 to 2020, indicating that aggressive apps are becoming more popular than
before. Surprisingly, we have identified a popular app (5 million installs) lasting from 2019 to
2021, com. androidlost, which appears to report the device location to the device owner when
its battery level is low or received commands sent from Google Cloud Messaging Service or SMS
messages, actually has a background location collection service that can be triggered by a hidden
command "startrack”. This hidden command is only available to the app developer, making its
location collection behavior not only aggressive but also suspicious.

Contributor of aggressive apps. In this study,

we have found three primary contributors in- .
volved in developing and deploying aggressive = 2021
location harvesting apps including independent
app developers, third-party LBS providers, and app ﬁ
generators. First, we have identified a surprising = +

B 'S —_

number of aggressive apps that are generated by
app generators. In particular, these generators are
identified by extending the relevant list that is col- m

lected in 2018 [74] and following its method to . 1 IT| PSSP vam g |
search for up-to-date generators that are available N

in 2020 with the help of a variety of search engines

(e.g., Google). In total, we have identified ten app ~ Fig. 6. Popularity comparison of aggressive apps.

generators contributing 7,728 (58.84%) aggressive

apps in 2021, and there are nine app generators leading to 25,315 (65.4%) aggressive apps in 2019.
We elaborate on several case studies in Section 5.4. Second, we have also found cases where apps
rely on third-party LBS providers to provide LBSes, and the aggressive location harvesting in
these providers is integrated into many similar apps. For example, there are five aggressive apps
in the Weather category that use Baron Service [8], a weather service provider, to provide their
weather-relevant services. Specifically, the Baron Service provides weather solutions to devel-
opers by giving out ready-to-use code packages, acting as a third-party library provider, but its

main business focuses are on other areas instead of software services.
Associated LBSes. In this study, we have identified 14,091 in 2021 and 38,688 in 2019 mobile apps
providing app-dependent LBSes that violate the minimum usage policy of location usage. To better
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understand the LBS that are related to aggressive tracking, we manually analyzed the randomly
selected 100 aggressive apps following the distribution of apps in Google Play in both years
(detailed results are listed in Table 3 in Appendix). At a high level, based on their provided LBSes,
these apps contain 6 popular LBSes: presenting the weather, filtering nearby users (e.g., distance-
based), searching local events and spots, geo-tagging, detecting speed, and pushing location-based
notifications. In regards to the distribution, as presented in Figure 7, the LBSes providing services of
local searching, in which only one request for location data is adequate when users search relevant
information, are shown to be more prone to contain aggressive data-accessing behaviors. Other
LBSes that require periodical access to location data, such as speed monitoring and location-based
notification pushing, are classified as aggressive since they are showing higher aggressiveness
on accessing the data, compared with their corresponding peer apps (e.g., updating speed every
few seconds is enough in apps not targeted for driving navigation and location-based notification
can be pushed when the distance interval is 1,000 m). Interestingly, we even found a set of apps
providing no LBSes that users can notice.
Basically, these inspected apps usually have

no requirement for high-accurate data, and it 4
does not affect the search results if changing
the geo-location of the tested Android device
to another place within one mile.

Shift of aggressive apps from 2019 to 2021.
In the longitudinal study, we studied 7,650 apps ~ °f

being flagged as aggressive either in 2019 or s} |_| |_|
2021, and check how these apps evolve from ag- !
gressive to non-aggressive or vice versa. Specif- & in f“::: &8 S
ically, 4,982 (65.12%) apps remain aggressive SEAN & @:i§

LBS Description &

from 2019 to 2021, 691 apps were aggressive
only in 2019 (referred to as AN (aggressive
to non-aggressive)), and 1,977 apps were non-
aggressive in 2019 but become aggressive in
2021 (referred to as NA). This indicates that the number of apps that aggressively collect locations
in the last 3 years is 2 times larger than the number of apps eliminating that behavior. In respect of
app categories, we found that 31 out of 37 categories have a growing number of aggressive apps
from 2019 to 2021.

Note that, regarding apps in AN, we found 593 of the 691 apps actually have not changed their
parameter values of minTime and minDistance. They are not flagged as aggressive in 2021 because
apps providing the same LBS are trending towards collecting more accurate location data, causing
the detection model to shift the classification boundary. According to our measurement result,
there are 2,139 apps in 2019 that shared the same LBS, and only 904 apps used 0 as parameters
value, but there are 1,783 apps sharing the same LBS in 2021 and 1,235 apps use 0 as their location
retrieving parameters.

Privacy policies. Recent works on privacy policy compliance have developed methods to automat-
ically check policy compliance of a given apk [18]. However, to the best of our knowledge, no tools
can check whether the policy quantitatively clarifies the precision and frequency of location data
they collect. To better understand the policy compliance of identified aggressive apps, we studied
the privacy policy of all 194 verified aggressive apps identified in our study, and check whether
they mentioned the frequency and accuracy of location collection. We collected the privacy policy
of identified aggressive apps following the privacy policy links displayed in the Google Play store
and provided in the app. We manually checked all the collected policies, and only 53 apps from 2019

Fig. 7. Distribution of the verified aggressive LBSes.
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Fig. 8. The visualization of the top 10 A&A libraries w.r.t time and distance intervals using different providers.
Blue and red markers denote advertisement and analytics libraries, respectively, and the dashed boxes contain
libraries setting both intervals to zero.

and 55 apps from 2021 have a privacy policy that acknowledged the user the existence of location
collection behavior in the app. However, we found that none of these policies explicitly documented
the frequency of location data collection in the corresponding apps. This raises concerns about
refining current privacy policy enforcement. We believe that a privacy policy that quantitatively
clarifies the precision and frequency of collected location data is beneficial to enforcing the data
minimization principle clarified in privacy policies, such as GDPR [44] and CCPA [28].

A&A Libraries. As mentioned earlier (§4.3), A&A libraries create an independent code space apart
from the other program code in an app. While we have excluded them from our results because of
their homogeneous behavior across different apps, considering they are also aggressive participants
in terms of location collection, we also present a corresponding analysis. In particular, we have
identified 77 advertising libraries and 12 analytics libraries that collect user location periodically,
and the majority of these libraries request location data at the fastest rate. We visualize the location
collection behaviors of the top 10 A&A libraries in Figure 8 and push the details in Table 4 in the
Appendix. It can be observed from Figure 8 that popular advertising libraries such as “tapjoy”,
“admarvel”, and “adtech” and analytics libraries, e.g., “moat.analytics”, “kochava”, and “umeng”
intend to obtain location without interruption. In addition, some libraries use the same parameter
settings in location services provided by different providers, e.g., “clevertap” set the parameters
to (60, 10) in both GPS and Network services. Moreover, the advertising library “vervewireless”
seems to be the most aggressive since it continuously requests location data from the three sources
all the time.

5.4 Case Studies on App Generators

Figure 9 shows how apps generated by app generators distribute across different mainstreaming
parties. Alongside observations from a prior study [74], we also find that app generators usually
generate apps using the same boilerplate code. For a better understanding, we reverse-engineered
several aggressive apps created by three generators which appeared in both 2019 and 2021 aggressive
apps with our best understanding.

(I) Biznessapps. Apps generated by this generator ask users for location data access with a user
consent of “to receive location-specific push notifications and other features” in a pop-up window
right after the first start. However, the claimed push notification service is implemented using the
obsolete Google Cloud Messaging service which has been deprecated since April 10, 2018, and
stopped after May 29, 2019. We found that the collected locations are actually used for data analytics.
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Specifically, whenever the user takes an action in the app, the location data will be automatically
sent to the remote host owned by Biznessapps.

(II) Goodbarber. Similarly, apps generated by Goodbar-
ber also ask for location permission right after the first
start. Unlike Biznessapps, Goodbarber does not send lo-
cation upon every action but collects and shares multiple
location data periodically with its host.

Upon investigation, we found the location data were
encoded in the body of a POST request and used for user
geo-distribution profiling, i.e., counting the number of
users in each country. Since such geo-distribution pro-
filing works only at the country level, the collection of
accurate geo-location coordinates using the highest pre-
cision without interruption is obviously unnecessary.
(IIT) Appsgeyser. Unlike the above two generators, this  Fig 9. App generators of aggressive track-
app generator uses different boilerplate codes for apps ing apps.
delivering different functions. Interestingly, we discov-
ered that its generated apps always ask for location permissions right after the first start regardless
of whether an app provides LBSes. This is because Appsgeyser has packed advertisement libraries
that need to access location data into its generated apps. In addition, advertisement is the major
profit revenue of Appsgeyser [4].

.
appsgeyser ~ _/ |}

makeitapp ’\

6 DISCUSSION AND FUTURE WORK

Limitations. Our proposed framework is built atop FlowDroid [19] and AndroGuard [5], and
inevitably inherits limitations from these two tools that could result in missing data flows, such as
insufficient modeling on reflective calls, Android runtime framework and asynchronous callbacks,
and non-Java level operations (e.g., WebView and native code). Although recent works [42], [87],
[58], and [55] enhanced static analysis regarding the native code, reflection call, and hybrid-apps
in Android, their techniques are not straightforward to be combined together as a systematic
analysis tool and generate sound call graphs. Also, false negatives can come from our conservative
parameters chosen in selecting negative model training samples, which is based on the assumption
that the majority of apps are benign. While it holds true in many categories, it may fail in certain
cases. Although their consequent false negatives are even difficult for experts to be noticed due to
the lack of consensus on the understanding of data minimization in location privacy, we still treat
it as one of our limitations. In addition, our solution to recognize LBSes based on its data flows
within apps, missing flows on the inaccessible server-side may lead to false positives, although it
achieves 90% recognition precision. Moreover, as mentioned in §4.3, our strict policy could result in
false negatives when a shared global location object is used for multiple LBS with different location
needs. Since we aim at reducing false positives, this compromised design is acceptable.

Latest location privacy countermeasures in Android. Android 10 and above support a new
permission ACCESS_BACKGROUND_LOCATION [46]) which is to forbid apps, if not being granted this
permission, from accessing location in the background (running invisibly to the users). However, it
requires the developers to compile their app targeting Android 10 (API level 29) or higher to enforce
the permission. Apps compiled targeting Android 9 or lower holding ACCESS_COARSE_LOCATION
or ACCESS_FINE_LOCATION will be automatically granted the new permission on devices running
Android 9 (or lower) and devices who are upgraded to Android 10. Among the 14,091 detected
aggressive apps, there are 10,349 apps (73%) that are built for Android 9 (or lower), which remain
unaffected by this new background location limitation mechanism. Besides, even the rest 3,742 apps
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which are built for Android 10 (or higher) can still aggressively collect location data through either:
(i) requesting the new background permission or (ii) creating a Android foreground service by
setting android: foregroundServiceType=“location” [6]. In particular, among these 3,742 apps,
353 apps have requested the new permission and another 117 apps have created such a foreground
service. Therefore, there are 10,819 aggressive apps (76%) that retain effective location collection
behavior against this new restriction mechanism on background location access.

Apart from increasing permission granularity, Android 11 and 12 introduced new system dia-
logues [7] during the location permission granting process that give the users extra options to
grant “only this time” and coarse location access, ignoring the permissions an app has requested.
Particularly, if chosen, these extra options grant apps temporary location access that is only valid
until the app exits, and apps need to ask for user authorization again when they were started
the next time. Studying how effective such extra options are in preventing aggressive location
collection is out of the scope of this paper and left as future work since it will require collecting
users’ behaviors when using the Android system.

Root causes and mitigation. LBS in the identified aggressive apps either comes from third parties
(e.g., app generators and service provider SDK) or from app developers’ own implementation. In
particular, while third-party tools and libraries can significantly assist developers in building mobile
apps or increase revenue, default values used for location collection by those tools could be beyond
necessity. As such, app developers should carefully configure the location access behaviors in these
tools. Additionally, although many third parties claim only to collect locations in anonymity, it is
still possible for them to track users from the anonymous data [93, 99]. Therefore, restrictions on
these types of collections should be suggested. Moreover, we would also like to suggest mobile app
markets (e.g., Google Play) to adopt more robust app vetting techniques to identify these aggressive
apps and protect their users’ privacy. This is because, first, apps may have illicit purposes, even
reliable apps may accidentally acquire the accurate locations without awareness, and second,
mobile operating systems may not be willing to provide a restriction mechanism allowing users to
configure the location access frequency due to user experience or usability reasons.

The principle of data minimization. The principle of data minimization has been clearly stated
in recently released privacy regulations, including GDPR [44], CCPA [28], and ACLU [47]. The
proper enforcement of this principle is believed to be able to suppress the aggressive location data
collections in the mobile platform; however, our study on the apps from 2019 to 2021 has not noticed
its effectiveness yet. A potential reason is that there lacks proper techniques for detecting such
violations. To facilitate, our work provides the first approach to detect the violation of this usage
principle in mobile apps. Moreover, our solution can recognize which party, the app developer or
third-party libraries providers, actually violates this principle, which is believed to be beneficial for
relevant authorities to enforce the privacy regulation on the corresponding party. We would like to
use our proposed solution to conduct a further longitudinal study to track the effectiveness of this
principle over the foreseen years.

Responsible disclosure. We have reported to the Google Play store about all the aggressive apps
we found during our study. As of December 2022, we are still awaiting a response. Considering the
number of aggressive apps found, reporting to app developers takes time and is our ongoing work.

7 RELATED WORK

Detection and defense for location privacy in mobile apps. There is a large body of works that
are able to detect location data leaks in Android apps. For example, Flowdroid [19], IccTA [56], and
Amandroid [95] track data-flows in general, while Extractocol [30] and WARDroid [66] specifically
focus on network data-flows. Additionally, there are works [26, 33, 54, 67, 78, 81, 86, 96, 99-102]
that focus on location leaks from other perspectives. On the other hand, there are also many works
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that propose defense mechanisms. For instance, MockDroid [25] and LP-Guardian [39] restrict
apps access to location data, PlaceMask [1] fakes users’ locations, and Caché [17] enforces apps
to access coarsened locations. Inspired by these works, our work focuses on the location-related
data-flows to identify aggressive fine-grained location collections in Android apps at scale.

A&A library analysis. There are numerous works that studied security and privacy issues in A&A
libraries, such as Stevens et al. [91]. In addition, Gibler et al. [45] studied security and privacy in
advertisement libraries, Ashford analyzed privacy issues related to A&A libraries in free apps [2],
and Crussell et al. [32] investigated advertisement frauds. Several other works [22, 57, 59, 65]
proposed effective algorithms to detect A&A libraries, and mitigation to such privacy issues has
been studied in [51, 60]. Complementary to these works, our study is beyond the location tracking
behaviors in the A&A libraries and focuses on other app-specific location services.

Code embeddings. Code embeddings have been explored in the field of software engineering and
program language in a variety of granularity, such as binary code [24, 83], code token [16, 21], and
single method [34, 69]. In addition, this technique has also been applied in binary code representation
(e.g., DeepBinDiff [37], Genius [41], Gemini [98], Asm2Vec [36]), code similarity comparison [103],
and cross-platform code comparison [98]. Moreover, there are also works that took advantage of
embedding generation techniques in forensic analysis. For instance, Attack2Vec [89] attempts to
understand cyber-attacks, DeepMem [90] generates abstract representations for kernel objects from
memory dumps, and Log2Vec [48]) represents user actions from logs. These works are orthogonal
to our work but use embedding techniques to generate the representation of program semantics.

8 CONCLUSION

We have presented a system, LOCATIONSCOPE, to automatically identify mobile apps that aggres-
sively harvest users’ locations on a large scale. In particular, we annotate and release the first
aggressive app dataset, and present a suit of novel techniques to detect those apps automatically.
We have tested LocaTioNScoPE with millions of free apps from Google Play and conducted a
longitudinal study on 38,688 and 14,091 detected apps with aggressive location harvesting, as of
2019 and 2021, respectively. Additionally, we identify the growing trend of aggressive apps from
2019 to 2021 and find the app generators as major contributors to such apps. Our findings made
the first step towards better understanding and detection of this new privacy risk.
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Table 3. Details of Manual Verification of Aggressive Apps (left: 2019, right: 2021): Privacy P: Privacy Policy;
Freq: Frequency; Loc: Location; Time Inter: Time Interval; Dist Inter: Distance Interval; Per: Periodical Location
Acquisition; ¢: presence; X: absence; -: N/A.
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Provider

GPS Network Passive

L . ) . %) .

E 2 E 2 E 2

Lib Identifier H A B A B A
admob -l - - -l - -
mobfox 0.05[10({0.05| 10|60| 100
tapjoy 0| 0120 200| - -
smaato.soma -l - -l - -
swelen.ads 0| 0 0 0| - -
adtech 0| 0 - - - -
nielsen 0| 0 0 0| - -
vervewireless.advert 0| 0 0 0| 0 0
admarvel 0| 0 - - - -
anywheresoftware.b4a| 0| 0| 60| 10| - -

(a) Advertisement libraries

Provider

GPS  Network Passive

L . L . L .

E 2z E 2 E 3z
Lib Identifier = A & A & A
flurry - -] 10 0]10 0
moat.analytics 0 0| o0 0| - -
newrelic.agent - -l - -1 0
quantcast 3008000 300 |8000| - -
umeng 1 0o 0 0 - -
kochava.android | 0 0| 0 of -
applause.android | 300 0300 of - -
yandex 1 0| o0 0| - -
clevertap 60| 10| 60| 10| - -
talkingdata 0 1| 0 1| - -

(b) Analytics libraries

18:27

Table 4. Location Collection in Top 10 A&A Libraries: Time: Time Interval; Dist: Distance Interval; -: N/A.
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